
 

 

 

 

On Number Theory and Quantum Mechanics 

Jeremy L. Ebert 

ABSTRACT. Physicists use the eigenvalue's of large random matrices to obtain estimates of 

the average spacing between consecutive energy levels of heavy atomic nuclei and other 

complex quantum systems. One connection between number theory and quantum 

mechanics comes from the discovery that these spacing's appear to behave statistically like 

the spacing's between consecutive zeros of the zeta function. In a similar vein this note sets 

out to show a link between quantized angular momentum and the divisor summatory 

function. 

1. INTRODUCTION 

The zeta function of a real argument was introduced by Leonhard Euler in the first half of 

the eighteenth century. Bernhard Riemann extended Euler's definition to include a complex  

argument and established a relation between its zeros and the distribution of prime 

numbers. The zeros of zeta function can be used to closely track the jumps and 

irregularities between the prime counting function and the asymptotic law of distribution of 

prime numbers. Wolfram.com has a beautiful demonstration of this. 

http://demonstrations.wolfram.com/HowTheZerosOfTheZetaFunctionPredictTheDistributionOfPrimes/ 



 

 

The divisor summatory function, is a summation over the divisor function. It is frequently 

used in the study of the asymptotic behavior of the zeta function. The divisor function d(n) 

counts the number of ways that an integer n can be written as a product of two integers.  
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For primes the divisor function equals 2, obviously counting the prime and the integer 1. 

One could think of the prime counting function as only counting the “2’s” of the divisor 

function.  

For composite integers, the divisor function is always greater than 2. Prime squares have 3 

divisors; in fact, only squares have an odd number of divisors. 
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Its trivial to see a prime p to the exponent m will have m+1 divisors. d(2^2)=3, d(2^3)=4, 

d(2^4)=5, d(2^5)=6,  d(2^6)=7… 

 This attribute of square numbers, highlights a trivial but useful property about divisors in 

general; all divisors below the square root of a number produce a quotient greater than the 

square root and vice versa, if a divisor is equal to the square root the quotient is equal to 

the divisor, so the divisor only gets counted once, producing an odd number of divisors.  

2. DIRICHLET'S ESTIMATE 

Gustav Lejeune Dirichlet was a German mathematician with deep contributions to number 

theory. He noticed how divisors and the geometry of conics were related. One contribution 

he made is a way to estimate the number of lattice points under a hyperbola which is in 

essence an estimate of the divisor summatory function. The tools he used for this were the 

hyperbolic logarithm and the Euler-Mascheroni constant. 



 

 

http://demonstrations.wolfram.com/LatticePointsUnderAHyperbola/ 

 

 

3. HYPERBOLIC LOGARITHM 

The natural logarithm was once called the hyperbolic logarithm as it corresponds to the area 

under the hyperbola created by the function      . It is the logarithm to the base  . 

Where   is an irrational and transcendental constant approximately equal to 

2.7182818282... It is generally denoted    ( ). The natural logarithm of a number   is the 

power to which   would have to be raised to equal  . For example   (      )    because 

          and   ( )    because     .  Euler defined the inverse relation between the 

exponential function    and the hyperbolic logarithm by demonstrating that    (  )   . 

Figure 1 gives the example of    ( ) where   √   and   is the Euler-Mascheroni constant, 

which is the limiting difference between the harmonic series ∑   
  
      

 
 
 
 
 
 
 

 
     and the 

natural logarithm, approximately equal to 0.5772156649. 
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Figure 1. The natural logarithm as it corresponds to the area under a hyperbola. 

A self similar symmetry can be seen with the natural logarithm and  the square root 

function. This symmetry plays a role in Dirichlet's estimate for the number of lattice points 

under the hyperbola. See Figure 2. 
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Figure 2. Dirichlet's estimate for the number of lattice points under the hyperbola      in 

the first quadrant is given by    ( )   (    ) . 
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3. GEOMETRIC MEAN THEOREM 

The Geometric Mean (  √       
  ) is one of the three Pythagorean Means. Geometric 

Mean Theorem is a result in elementary geometry that describes a relation between the 

altitude in a right triangle and the two line segments it creates on the hypotenuse. It states 

that the geometric mean of the two segments equals the altitude. A multiplication table can 



 

 

be derived from these two line segments for a given hypotenuse. This table is also called 

the Table of Pythagoras and is attributed to him by some authors. See Figure 3. 
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Figure 3.  Geometric Mean Theorem for a given hypotenuse (top). Table of Pythagoras 

(bottom). 

 

http://betterexplained.com/articles/understanding-why-complex-multiplication-works/ 

http://betterexplained.com/articles/understanding-why-complex-multiplication-works/
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Figure 4.  Divisor and quotient results of the Geometric Mean Theorem for a given altitude 

Another aspect of the Geometric Mean Theorem which directly relates to the divisor function 

is the two integer valued line segments of a hypotenuse for a given altitude is equivalent to 

a divisor and quotient of the square of the altitude. See Figure 4. So from the Geometric 

Mean Theorem we can geometrically derive the multiplication table by use of the 

hypotenuse and the divisor function by use of the altitude. 

 

 

4. ARITHMETIC-GEOMETRIC MEAN (AGM) 

In mathematics, the inequality of arithmetic (  
 

 
(         ) ) and geometric 

(  √       
  )  means, or more briefly the AM–GM inequality, states that the arithmetic 

mean of a list of non-negative real numbers is greater than or equal to the geometric mean 

of the same list; and further, that the two means are equal if and only if every number in 

the list is the same. Arithmetic-Geometric mean type approaches are used as the foundation 

for fast computational modules in some mathematical packages. For instance here is one 

approach. (*AGM Method pi algorithm)  

From Figure 4 we can look at the divisors (  ) and quotients (  ) of the number 12 and 

their relation to its Geometric Mean (altitude): 
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Applying the Arithmetic Mean (hypotenuse) we can see the convergence to the Geometric 

Mean taking place: 
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Utilizing the AM–GM inequality to concentrically align these two means results in a 

projection of the hyperbolic logarithm revealing the true nature of the hyperbola, a conic 

section. See Figure 5 a, b, c. 
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Figure 5 (a). AM–GM symmetry with the hyperbolic logarithm. 



 

 

 

Figure 5 (b). the hyperbola as a conic section 
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Figure 5(c). If we view this geometry concentrically it becomes apparent that the square 

root function and the divisor function are intrinsically related to conics. 



 

 

 This geometry shows a deep connection with the irrationality of   and square root of a 

number. We will show later how the ladder operator values of quantized angular momentum 

mimic the values of this multiplication table.  

5. ANGULAR MOMENTUM 

A classical example of angular momentum is that of a spinning figure skater. Conservation 

of angular momentum is demonstrated when she reduces her moment of inertia by pulling 

in her arms, causing her angular velocity, usually denoted  , to increase. The moment of 

the inertial force on a particle around an axis multiplies the mass of the particle by the 

square of its distance to the axis (think inverse square law), and forms a parameter called 

the moment of inertia usually denoted      . In a two dimensional planar motion (think 

pendulum) this is a scalar quantity, in 3 dimensions it is known as a tensor because 

direction becomes a factor. Angular momentum is usually denoted as   giving the 

equation     . Linear momentum, usually denoted  , is the product of the mass and 

velocity giving the equation     .  Angular momentum can also be expressed as the cross 

product of linear momentum and its position   from the axis of rotation, giving the 

equation      . See Figure 6. 

 

Figure 6. Angular momentum as the cross product of position and linear momentum.  

6. QUANTUM ANGULAR MOMENTUM 

The ideas in classical mechanics can be carried over to quantum mechanics, by 

reinterpreting   as the quantum position operator and   as the quantum momentum 

operator.   is then the orbital angular operator. In quantum mechanics there is another 

angular momentum operator  , know as spin. It can generally be thought of as the earth 

(electron) spinning ( ) on its axis, as it orbits ( ) the sun (nucleus), but this a very limited 

analogy. The total angular momentum ( ) of a particle then is given by      . This not a 

continuous valued function as in classical mechanics, rather it is quantized by integer and 

half-integer values of the reduced Planck constant  . The product of the Planck constant ( ) 

and the frequency ( ) of a particle can be used to describe its energy, giving the equation 

    , reducing the constant ,   
 

  
  gives the equation    | |, where the magnitude of 

its angular velocity | | is its angular frequency.  

The Heisenberg uncertainty principle tells us that it is not possible to know a particles exact 

position ( ) and momentum ( ) simultaneously. The more precisely the position of some 



 

 

particle is determined, the less precisely its momentum can be known, and vice versa. It 

turns out that the best that one can do is to simultaneously measure both the angular 

momentums magnitude (absolute value | | ) and its component along one axis(   ). The z-

axis is typically used for convention. The math behind the different angular momentum 

operators (spin  , orbital   and total  ) are carbon copies of each other.  

A model used in Quantum Physics describes electrons using four quantum 

numbers              . 

1. ( ) The principal quantum number   describes the electron shell or energy level of 

an atom. This quantum number is limited to integer values only. 

2. ( ) The orbital quantum number   describes the subshell and gives the magnitude of 

the orbital angular momentum | | through the relation | |  √ (   )  . This quantum 

number is limited to integer values less than  .     (   ). 

3. (  ) The magnetic quantum number    describes the specific orbital (or "cloud") 

within that subshell, and projects a component of the orbital angular momentum on 

a specific axis   .             . Again, the z-axis is typically used for 

convention.  

4. (  ) The spin projection quantum number    yields the component of the spin 

angular momentum on a specific axis   .             where   is the spin 

quantum number and the spin magnitude | |  √ (   )  . The quantum number   

can be both integer and half-integer values. For electrons,       and     
 

 
  

 

 
 

There is one more operator that we will consider; it is called a ladder operator. This 

operator is used to raise and lower the    or    values by  . It is usually denoted as     for 

spin and     for orbital angular momentum. The equation for the ladder operator for orbital 

angular momentum is     √ (   )     (    )  , as mentioned already, the math is the 

same for all forms of angular momentum. This operator allows us to step through all of the 

observable states of angular momentum, with a given magnitude, on a specific axis. See 

Figure 7. 
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Figure 7. The three quantum numbers        are used to describe orbital angular 

momentum. Zeros of the wave function: 
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NOTES 

http://en.wikipedia.org/wiki/Steradian 
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Appling this information along with the Heisenberg uncertainty principle to the generalized 

angular momentum operator it holds that we can simultaneously measure only two 

components of each type of angular momentum: 

     | |  √ (   )     

and 

   

                

where 

   is the quantized angular momentum vector. 

 | | is the norm or magnitude of the vector. 

   is the quantum number associated with the particular type of angular momentum. 



 

 

    is one component of the angular momentum on an arbitrary axis  . The  -axis is 

typically used for convention specified by   . 

    is a projection quantum number and ranges from    to    in steps of one. This 

generates      different values of   . 

   is the reduced Planck constant. 

 

A graphical representation of    and     is presented in Figure 2. Utilizing the Pythagorean 

theorem a representation of the observables | | and    is presented in Figure 3. 

 

 

 

 

 

 

 

 

                                                                                                             

 

 

Figure 2. The values of   and    can be arranged in a symmetric triangular array to aid in 

visualizing their values.      
 

 
   

 

 
   

 

 
   

 



 

 

 

Figure 3. Due to the Heisenberg uncertainty principle, the observable values of an angular 

momentum vector   are | | and     

 

 

The values of          can be generated with the following basic equations: 

   
   

 
   for an integer  . 

    
   

 
                                . 

Notice that the using these equations the values of    step down from    to   . In 

quantum mechanics this would be considered a lowering operator denoted by     . It has a 

companion the raising operator   . They are called ladder operators and are typically 

denoted by    . The values of    are typically defined as: 

     √ (   )     (    )     √(   )(     )    

     √ (   )     (    )     √ (   )    

              

These operators eigenvaulues can be thought of as the relative intensities between the 

observable states of   . If thought of as a vector, the magnitude of     and the z-axis 

component    
  could be interpreted as: 

 |  |    
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A magnetic dipole moment in a magnetic field will possess potential energy which depends upon 

its orientation with respect to the magnetic field. Since magnetic sources are inherently dipole 

sources which can be visualized as a current loop with current I and area A, the energy is usually 

expressed in terms of the magnetic dipole moment:  

 

where  
 

The energy is expressed as a scalar product, and implies that the energy is lowest when the 

magnetic moment is aligned with the magnetic field. The difference in energy between aligned 

and anti-aligned is 

 

The expression for magnetic potential energy can be developed from the expression for the 

magnetic torque on a current loop. 

These relationships for a finite current loop extend to the magnetic dipoles of electron orbits and 

to the intrinsic magnetic moments associated with electron spin and nuclear spin.  

 

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magfie.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#pe
http://hyperphysics.phy-astr.gsu.edu/hbase/vsca.html#vsc1
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magmom.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/nspin.html#c2


 

 

 

a=2.5  

n=6  

|A|^2 = 8.75 

p=(n-1) 

A-=sqrt((k(n-k)))=(k(p+1-k))={+5,+8,+9,+8,+5,~0} 

A+=sqrt(((k-1)(n+1-k)))=((k-1)(p+2-k))={~0,+5,+8,+9,+8,+5} 

ma-=(((n-1)+1)/2)-k =(n/2)-k=(p+1/2)-k={+2,+1,~0,-1,-2,-3} 

ma+=(((n-1)+1)/2)+k =-(n/2)+k=-(p+1/2)+k={-2,-1,~0,+1,+2+3} 

|A-+|=((n-1)+1)/2 = n/2=(p+1/2)=3=radius/magnitude of the vector 

|A-+|^2 = 9 

 

 

 



 

 

 

 

 

 

Magnetic Dipole Moment 

From the expression for the torque on a current loop, the characteristics of the current loop 

are summarized in its magnetic moment 

 

. 

The magnetic moment can be considered to be a vector quantity with direction 

perpendicular to the current loop in the right-hand-rule direction. The torque is given by 

 

As seen in the geometry of a current loop, this torque tends to line up the magnetic 

moment with the magnetic field B, so this represents its lowest energy configuration. The 

potential energy associated with the magnetic moment is 

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magmom.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magfie.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magpot.html#c1


 

 

theta is the angle (dot product)  

so that the difference in energy between aligned and anti-aligned is 

180 degrees out of phase  

 

These relationships for a finite current loop extend to the magnetic dipoles of electron orbits 

and to the intrinsic magnetic moment associated with electron spin. Also important are 

nuclear magnetic moments.  

 

 

http://www.physicsclassroom.com/class/sound/u11l4d.cfm 

 

the planck constant  can be thought of as a string of length h vibrating at a frequency f. 

As spin s=(n/2) increases in angular momentum in creates the nth harmonic  of the base 

frequency. 

These harmonics have a wavelength 2h/n and a frequency n times the base frequency. 

The amplitude of the spin angular momentum cannot exceed the base amplitude by a ratio 

of  ((n+1)/2)? 

One could create a reduced divisor summatory function by subtracting the count of all trivial 

divisors 2n-1 and relating it to the prime counting function in the following way: 

 

d(n) = divisor function, d(p)=2 for all primes p 

SUM[d(k)] where 1<=k<=n = divisor summatory function 

       = D(n) 

       = count of divisors 

pi(n) = count of prime numbers 

n-1 = count of prime and composite integers, 1 is neither prime nor composite 

2n-1 = count of trivial divisors 

n-1–pi(n) = count of composite numbers 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/orbmag.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/nspin.html#c2
http://www.physicsclassroom.com/class/sound/u11l4d.cfm


 

 

D(n)-2n-1 = reduced divisor summatory function  

     = count of non-trivial divisors  

D(n)-2(n-1-2pi(n)) 

 

 

 

 

http://en.wikipedia.org/wiki/Prime_number_theorem 

http://en.wikipedia.org/wiki/Riemann_zeta_function 

http://demonstrations.wolfram.com/HowTheZerosOfTheZetaFunctionPredictTheDistributionOfPrimes/ 

http://en.wikipedia.org/wiki/Divisor_summatory_function 

 

Wavefunction Contexts 

http://en.wikipedia.org/wiki/Prime_number_theorem
http://demonstrations.wolfram.com/HowTheZerosOfTheZetaFunctionPredictTheDistributionOfPrimes/
http://en.wikipedia.org/wiki/Divisor_summatory_function


 

 

 
 


