Fermat's factorization method of N=a^2 - b^2 geometrically can be viewed as the Pythagorean theorem, in fact Fermat's factorization method generates Pythagorean Triples when N is a perfect square. Expanding on this geometry:

Given a divisor k, a dividend n, and a quotient q, a symmetry can be obtained by comparing the divisor and quotient. With the difference, t between the quotient and divisor

t = q - k

The polynomial equation

kq - n = 0

k(k+t) - n = 0

is solved by

 $t = (n - k^2)/k.$

 $D(n) = \sum_{k=1}^{\lfloor \sqrt{n}
floor} (2 \cdot \lfloor t
floor + 1)$ (The Divisor Summatory Function)

 $\frac{t}{2}$ provides some useful geometric insite.

$$s = \frac{t}{2}$$

alternate forms:

 $s = (n - k^2)/(2k)$

 $s + k = (n + k^2)/(2k)$

 $(s + k)^2 - s^2 = n$ (Fermat's factorization method N=a^2 - b^2)

 $\sqrt{(s+k)^2 - n} = s$

(s+k) + s = q

$$(s+k) - s = k$$

$$(s+k) + \sqrt{(s+k)^2 - n} = \frac{n}{k} = q$$

Klein four-group of the function = $(n - k^2)/(2k)$.

Z/Z_12	0	1	2	3	4	5	6	7	8	9	10	11	Additive group of integers modulo m , where m=12
QR_12*	0	1	4	9	4	1	0	1	4	9	4	1	Quadratic residue of the multiplicative group modulo m
Z_12*		1				5		7				11	Multiplicative group of integers modulo m, Klein four-group
s^2		0				4		9				1	(s+k)^2-s^2=Z_12*, permutation of QR_12*={0,4,9,1}
(s+k)^2		1				9		4				0	(s+k)^2-s^2= Z_12*, permutation of QR_12*={1,9,4,0}
S		{0,6}				{2,8}		{3,9}				{5,11}	{0,2,3,5,6,8,9,11}
s+k		{7,1}				{9,3}		{10,4}				{0,6}	{1,3,4,6,7,9,10,0}+{0,2,3,5,6,8,9,11}={1,5,7,11,13,17,19,23}
k		{7,5}				{7,5}		{7,5}				{7,5}	{7,5} a generating set of Z12* Klein four-group

example n=119, m=12

119 = 11 (mod 12)

$$s = \frac{119-1}{2} = 59$$
, $s^2 = 1 \pmod{12}$
 $s = \frac{119-49}{14} = 5$, $s^2 = 1 \pmod{12}$
 $s = \frac{119-289}{34} = -5$, $s^2 = 1 \pmod{12}$
 $s = \frac{119-14161}{238} = -59$, $s^2 = 1 \pmod{12}$

$$s + k = \frac{119+1}{2} = 60, \quad (s + k)^2 = 0 \pmod{12}$$
$$s + k = \frac{119+49}{14} = 12, \quad (s + k)^2 = 0 \pmod{12}$$
$$s + k = \frac{119+289}{34} = 12, \quad (s + k)^2 = 0 \pmod{12}$$
$$s + k = \frac{119+14161}{238} = 60, \quad (s + k)^2 = 0 \pmod{12}$$

Z/Z8	0	1	2	3	4	5	6	7	Group of integers in the additive group modulo 8
QR8*	0	1	4	1	0	1	4	1	Quadratic residue of the multiplicative group modulo 8
Z8*		1		3		5		7	Multiplicative group modulo 8, Klein four-group
S^2		0		1		4		1	(S+K)^2-S^2= Z8* permutation of QR8*={0,1,4,1}
(S+K)^2		1		4		1		0	(S+K)^2-S^2= M8 permutation of QR*8={1,4,1,0}
S		{0,4}		{1,5}		{2,6}		{3,7}	{0,1,2,3,4,5,6,7}
S+K		{1,5}		{0,4}		{7,3}		{6,2}	{0,1,2,3,4,5,6,7}
К		{1,1}		{7,7}		{5,5}		{3,3}	{7,3},{1,5} generating sets of Z8* Klein four-group

example n=119, m=8

119 = 7 (mod 8) $s = \frac{119-1}{2} = 59$, $s^2 = 1 \pmod{8}$ $s = \frac{119-49}{14} = 5$, $s^2 = 1 \pmod{8}$ $s = \frac{119-289}{34} = -5$, $s^2 = 1 \pmod{8}$ $s = \frac{119-14161}{238} = -59$, $s^2 = 1 \pmod{8}$

 $s + k = \frac{119+1}{2} = 60, \quad (s + k)^2 = 0 \pmod{8}$ $s + k = \frac{119+49}{14} = 12, \quad (s + k)^2 = 0 \pmod{8}$ $s + k = \frac{119+289}{34} = 12, \quad (s + k)^2 = 0 \pmod{8}$ $s + k = \frac{119+14161}{238} = 60, \quad (s + k)^2 = 0 \pmod{8}$

NOTES

The function $f: Q_n \rightarrow Q_n$ defined by $f(x) = x^2 \mod n$ is a permutation. The inverse function of f is: $f^{-1}(x) = x^{((p-1)(q-1)+4)/8} \mod n$

reduced residue system modulo 12 = $\{1,5,7,11\}$ = n = $\varphi(12)$

quadratic residue modulo 12= {1,4,9,4,1,0} = {0,4,9,1} = s^2

quadratic residue modulo 12= $\{1,4,9,4,1,0\} = \{1,9,4,0\} = (s+k)^2$

1-0=1

9-4=5

4-9=7

0-1=11

least/complete residue system modulo 12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

reduced residue system modulo $12 = \{1,5,7,11\} \ \varphi(12) = 4, \ \lambda(12) = 2, totient and carmichael functions$

multiplicative group of integers modulo 12= $(\mathbb{Z}/12\mathbb{Z})^x \cong C_2 \times C_2$, the Klein four-group

*	1	а	b	ab
1	1	а	b	ab
а	а	1	ab	b
b	b	ab	1	а
ab	ab	b	а	1

{1,12,66,220,495,792,924,792,495,220,66,12,1} = n!/(k!(n-k)!)

http://mathworld.wolfram.com/FiniteGroupC2xC2.html

where $0 \le x \le \infty$, $x \in \mathbf{Z}$

A = 12x + 1

B = 12x + 5

C = 12x + 7

D = 12x + 11

Again looking at the geometries of the system from a quadratic residue mod 12 viewpoint:

where $s = (n - k^2)/(2k)$)	
$(s+k)^2 \equiv 1 \bmod 12,$	$s^2 \equiv 0 \mod 12$,	$n \in A$
$(s+k)^2 \equiv 9 \bmod 12,$	$s^2 \equiv 4 \mod 12$,	n ∈ B
$(s+k)^2 \equiv 4 \bmod 12,$	$s^2 \equiv 9 \mod{12},$	n ∈ C
$(s+k)^2 \equiv 0 \bmod 12,$	$s^2 \equiv 1 \mod 12$,	$n \in D$

bijection or one-to-one correspodence is a function giving an exact pairing of the elements of two sets

A+D=A,	B+C=A		
A-D=A,	B+C=A		
D - A = C,	$B\cdot D=C,$		
$A\cdot D=D,$	$B \cdot C = D$,		
$A \cdot A = A$,	$B \cdot B = A$,	$\boldsymbol{C}\cdot\boldsymbol{C}=\boldsymbol{A},$	$D \cdot D = A$
$A \cdot B = B$,	$C \cdot D = B$,		
$A\cdot C=C,$	$B \cdot D = C$,		
$A \cdot D = D$,	$B \cdot C = D$,		

where $1 \le p \le (x+1)$

 $s + k \equiv \{1,5\} \mod 6, \quad s \equiv 0 \mod 6, \quad n \in \mathbf{A}, \quad s + k = \frac{1}{2}(6p + 3 - (-1)^p)$ $s + k \equiv 3 \mod 6, \quad s \equiv \{2,4\} \mod 6, \quad n \in \mathbf{B}, \quad s + k = (6p + 3)$ $s + k \equiv \{2,4\} \mod 6, \quad s \equiv 3 \mod 6, \quad n \in \mathbf{C}, \quad s + k = \frac{1}{2}(6p + 3 + (-1)^p)$ $s + k \equiv 0 \mod 6, \quad s \equiv \{1,5\} \mod 6, \quad n \in \mathbf{D}, \quad s + k = 6p$

A composite number example:

$$n \in \mathbf{D}, \quad n = 119, \quad x = 9, \quad p = \frac{n+k^2}{12k}, \quad k = s+k - \sqrt{(s+k)^2 - n}, \quad q = s+k + \sqrt{(s+k)^2 - n}$$

$$\frac{119 - 1^2}{2} = 59, \quad 59^2 \equiv 1 \mod 12, \quad \{k,q\} = (6*10) \pm \sqrt{6^2*10^2 - 119} = \{1,119\}$$

$$\frac{119 - 7^2}{14} = 5, \quad 5^2 \equiv 1 \mod 12, \quad \{k,q\} = (6*2) \pm \sqrt{6^2*2^2 - 119} = \{7,17\}$$

$$\frac{119 - 17^2}{26} = -5, \quad -5^2 \equiv 1 \mod 12, \quad \{k,q\} = (6*2) \pm \sqrt{6^2*2^2 - 119} = \{17,7\}$$

$$\frac{119 - 119^2}{238} = -59, \quad -59^2 \equiv 1 \mod 12, \quad \{k,q\} = (6*10) \pm \sqrt{6^2*10^2 - 119} = \{119,1\}$$

B=2sqrt(n) H=(n-k^2)/(2k)

$$\frac{k}{s+k} = versine(\theta)$$
$$\frac{s}{s+k} = cosine(\theta)$$
$$\frac{\sqrt{n}}{s+k} = sine(\theta)$$

 $s((n+k^2)/(2s^*k)) + sqrt(s^2((n+k^2)/(2s^*k))^2 - n)$

$$(n+k) \pm \sqrt{6^2 * 10^2 - 119} = \{119,1\}$$
$$m\frac{n+k^2}{m2k} + \sqrt{m^2 \left(\frac{n+k^2}{m2k}\right)^2 - n} = (2S+k) \mod (2m)$$

The <u>lateral surface</u> area of a right circular cone is $LSA = \pi r l$ where r is the radius of the circle at the bottom of the cone and l is the lateral height of the cone (given by the <u>Pythagorean</u> theorem $l = \sqrt{r^2 + h^2}$ where h is the height of the cone). The surface area of the bottom circle of a cone is the same as for any circle, πr^2 . Thus the total surface area of a right circular cone is:

$$SA = \pi r^2 + \pi r l_{\rm or}$$
$$SA = \pi r (r+l)$$

[edit] Volume

See also: <u>Pyramid (geometry)#Volume</u>

The <u>volume</u> V of any conic solid is one third of the product of the area B of the base and the height H (the perpendicular distance from the base to the apex).

$$V = \frac{1}{3}BH$$

In modern math, this formula can easily be computed using calculus - it is, up to scaling, the

 $\int x^2 dx = \frac{1}{3}x^3.$ integral